Transfusion-transmitted infections: an update

Su Brailsford
Consultant in Epidemiology and Health Protection
NHSBT/HPA
Overview

• What is a transfusion-transmissable infection (TTI)?
• What is reported?
• How many infections are real?
• Previous cases
• Risk-reduction measures
What makes a good non-bacterial TTI?

– Potential for transfusion transmission
 • Asymptomatic carriage
 • Survival in blood components
 • Infectious by IV route
 • Susceptible population

- hepatitis A
- hepatitis B
- HIV
Transfusion-transmitted infections

- **Prions**
 - vCJD

- **Viral**
 - Those we test for routinely e.g. hepatitis B
 - Those we don’t e.g. hepatitis A
 - Emerging infections e.g. HIV in 1980s ?hepatitis E now

- **Parasites**
 - e.g. malaria

- **Bacteria**
 - Red cells e.g. *Pseudomonas spp.*
 - Platelets e.g. Staphylococci
What constitutes a TTI: SHOT definition

• A report is classified as TTI if, following investigation:
 – The recipient had evidence of infection post-transfusion, and there was no evidence of infection prior to transfusion and no evidence of an alternative source of infection;

 and either:
 – At least one component received by the infected recipient was donated by a donor who had evidence of the same transmissible infection,

 or:
 – At least one component received by the infected recipient was shown to contain the agent of infection.
Potential non-bacterial TTIs reported to NHSBT for investigation

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>HCV</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>HIV</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HEV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HAV</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTLV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Malaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>23</td>
<td>33</td>
<td>16</td>
<td>17</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>
Confirmed TTIs reported to the NHSBT/HPA Epidemiology Unit between 1/10/1995-31/12/2010 by year of transfusion and infection

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td></td>
</tr>
<tr>
<td>HAV</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3 (3)</td>
<td>-</td>
</tr>
<tr>
<td>HBV</td>
<td>3 (3)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2 (3)</td>
<td>1 (1)</td>
<td>-</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11 (12)</td>
<td>-</td>
</tr>
<tr>
<td>HCV</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>-</td>
<td>2 (2)</td>
<td>-</td>
</tr>
<tr>
<td>HEV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
</tr>
<tr>
<td>HIV</td>
<td>1 (3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (4)</td>
<td>-</td>
</tr>
<tr>
<td>HTLV I</td>
<td>2 (2)</td>
<td>-</td>
<td>2 (2)</td>
<td>-</td>
</tr>
<tr>
<td>Bacteria</td>
<td>2 (2)</td>
<td>3 (3)</td>
<td>4 (4)</td>
<td>4 (4)</td>
<td>7 (7)</td>
<td>5 (5)</td>
<td>1 (1)</td>
<td>3 (3)</td>
<td>a</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>3 (3)</td>
<td>4 (6)</td>
<td>2 (3)</td>
<td>-</td>
<td>42 (45)</td>
<td>11</td>
</tr>
<tr>
<td>Malaria</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (2)</td>
<td>1</td>
</tr>
<tr>
<td>vCJD/prion</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>-</td>
<td>1 (1)</td>
<td>-</td>
<td>4 (4)</td>
<td>3±</td>
</tr>
<tr>
<td>Total</td>
<td>11 (13)</td>
<td>8 (8)</td>
<td>5 (5)</td>
<td>7 (8)</td>
<td>9 (9)</td>
<td>5 (5)</td>
<td>3 (3)</td>
<td>5 (5)</td>
<td>1 (1)</td>
<td>4 (4)</td>
<td>2 (2)</td>
<td>3 (3)</td>
<td>4 (6)</td>
<td>2 (3)</td>
<td>-</td>
<td>69 (75)</td>
<td>12</td>
</tr>
</tbody>
</table>

The number of incidents is shown with the total number of infected recipients identified in brackets*
Strategies to reduce risk of transfusion transmitted infections

- DONOR SELECTION
- PROCESSING, QUALITY CONTROL
- SCREENING TESTS
- STORAGE, PATHOGEN INACTIVATION
- BETTER BLOOD TRANSFUSION
- TRACING SURVEILLANCE

vCJD

- Has had major impact on blood safety measures in UK

- Donor deferral
 - Transfused donors
 - Donors who have resided in UK (for other Blood Services outside UK)

- Active surveillance

- Other measures
 - UK plasma no longer used for fractionation
 - Importation of FFP for certain groups
 - Reduce donor exposures
 - Leucodepletion
Transmissions of vCJD infection linked to known infected donors

- 1996 (reported 2003)- clinical symptoms (at 6.5 years)
- 1999 (reported 2004)- no symptoms, incidental finding at post-mortem (at 5 years)

- 1997- two recipients (reported 2005 and 2006), both clinical symptoms, linked to one donor
 - in late 1997 non-leucodepleted red cells transfused, donor developed symptoms approximately 20 months later. Donor’s previous red cell donation also transfused.
 - recipients developed symptoms 7.5 years post-transfusion and 8.5 yrs post-transfusion

6 other cases with transfusion history and no known infected donor
Leucodepletion

- Reduction of white cells as vCJD risk-reduction measure

- BUT in addition possible impact on other cell-associated viruses e.g. CMV, HTLV

- <5 X 10^6 white cells per unit (‘CMV-safe’) but does not eliminate risk
CMV

- Currently some recipients receive CMV negative transfusions

- SaBTO position statement issued in March 2012

- Considered evidence: was there sufficient evidence to replace CMV-negative components by leucodepleted components?

- Others sources of infection include tissue, stem cell and organ transplants and vertical transmission
CMV

- Was sufficient evidence to recommend some groups require leucodepleted but not CMV neg components

- CMV negative components for specific patient groups including
 - Intra-uterine transfusion + neonates (up to 28 days)
 - Elective transfusions during pregnancy Immunodeficient patients- leucodepleted

- Continue to monitor any reports of TTIs

- Continue to test some donors for CMV
Importance of Testing

Timeline of introduction of microbiological tests for blood donations, UK

HBV Window Period 38 days
HCV Window Period 4 days
HIV Window Period 9 days
(HTLV 1 Window Period 45 days but ? relevance)
Generalised course of infection

Marker

Genome

Antibody

Antigen

Time of infection

Time (months/years)

NHS Blood and Transplant
Estimates of the risk of HBV, HCV, HIV or HTLV I infectious donations entering the blood supply, UK

<table>
<thead>
<tr>
<th></th>
<th>HBV</th>
<th>HCV</th>
<th>HIV</th>
<th>HTLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Period donation 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per million</td>
<td>1.11</td>
<td>0.02</td>
<td>0.19</td>
<td>0.08</td>
</tr>
<tr>
<td>1 per X million</td>
<td>0.9</td>
<td>55.37</td>
<td>5.22</td>
<td>12.3</td>
</tr>
<tr>
<td>Window Period donation 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per million</td>
<td>0.94</td>
<td>0.01</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>1 per X million</td>
<td>1.06</td>
<td>72.50</td>
<td>6.18</td>
<td>7.89</td>
</tr>
</tbody>
</table>
Donor selection

- Importance of donor information and reporting post-donation information

- Importance of donor selection criteria
 - Window period infections
 - Infections we do not test for
 - Travel and behavioural risks
HAV case

- Donor reported symptoms of hepatitis A eight days post-donation
- Red cells were discarded but plasma transfused
- Hepatitis A identified in archive sample by PCR
- Recipient given active and passive immunisations and developed sub-clinical infection with no sequelae.

Prompt action due to post-donation information
Malaria

– TTI rare in non-endemic countries
– 5 cases between mid 1980s to 2011, last 2003
– Donor selection and antibody testing
– Cases to date
 • Two donors did not give complete information
 • Error- red cells released
 • Two donors with history of residency, >3 years since travel, no test.
Bacterial TTIs

- Approximately 100 suspected reported each year
- Investigation of pack/recipient and occasionally the donor
- Last confirmed reported bacterial TTI in 2009
- Arm cleansing and diversion strategy
- Improved infection prevention and control measures
- Additional bacterial screening for platelets
- NO screening for red cells
Bacterial screening to end February 2012 number and (percentage): NHSBT

<table>
<thead>
<tr>
<th></th>
<th>Number screened</th>
<th>Initial Reactive</th>
<th>Confirmed Positive</th>
<th>Indeterminate Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apheresis platelets</td>
<td>204,714</td>
<td>1309 (0.64)</td>
<td>36 (0.02)</td>
<td>103 (0.05)</td>
</tr>
<tr>
<td>Pooled platelets</td>
<td>37,468</td>
<td>160 (0.43)</td>
<td>27 (0.07)</td>
<td>29 (0.08)</td>
</tr>
<tr>
<td>Total</td>
<td>242,182</td>
<td>1469 (0.61)</td>
<td>63 (0.03)</td>
<td>132 (0.05)</td>
</tr>
</tbody>
</table>
Bacterial screening

- NHSBT sample after overnight hold
- Aerobic and anaerobic culture
- Majority of isolates anaerobic skin flora

- Has prevented transmission of potentially nasty bacteria to recipient
Current TTI risk

- Number of TTIs remains low
- Current infectious disease epidemiology and……
- Risk reduction measures in place
 - Donor selection
 - Screening tests
 - Processing and administration
 - Better Blood Transfusion
 - SHOT
The source of infection is probably not the blood but if in doubt check!
Acknowledgments

- NHSBT/HPA Epidemiology Unit members past and present
- Dr Patricia Hewitt