The Blood Safety and Quality Regulations 2005:
Assessing Compliance

David Churchward
Senior GMP Inspector
7th July 2008
The materials featured within these MHRA presentation notes and delegate pack are subject to Crown copyright protection for this event. Any other copy or use of Crown copyright materials featured in this presentation, in any form or medium, is subject to prior approval of the MHRA which has Delegated Authority from Her Majesty's Stationery Office (HMSO) to administer Crown copyright for MHRA originated material. Applications should be in writing, clearly stating the proposed use/reuse of the information, and should be sent to the MHRA at the following address: Conference and Education Function, 16th Floor, MHRA, 1 Nine Elms Lane, London SW8 5NQ. Fax 020 7084 3522 or e-mail speakers@mhra.gsi.gov.uk. You may not sell or resell any information reproduced to any third party without prior agreement. The permission to reproduce Crown copyright protected material does not extend to any material in this pack which is subject to a separate licence or is the copyright of a third party. Authorisation to reproduce such material must be obtained from the copyright holders concerned.
Presentation outline:

- The MHRA as Competent Authority
- ‘Better Regulation’ – Hampton Compliance
- Inspection scheduling
 - Risk-based inspection programme
 - Inspection ‘triggers’
 - Haemovigilance information
 - Use of other intelligence sources
- Inspection outcomes
 - Implementing Good Practice
 - Common areas of deficiency
- Questions
MHRA as Competent Authority – Monitoring Compliance
The MHRA as Competent Authority

- MHRA has been designated as Competent Authority for blood and blood components.

- It is the Competent Authority’s responsibility to ensure compliance with the requirements of the EU Directives.
 - Assess compliance of BEs and HBBs
 - Operate a system for Haemovigilance reporting
 - Disseminate information to BEs and HBBs relating to public safety as required (e.g. special epidemiological situations)
‘Better Regulation’ – Hampton Compliance

- Principles (applicable to all Regulators):
 - reduce Regulatory burden to businesses
 - Direct Regulatory efforts at areas where it is most needed; comprehensive risk assessment to focus resources
 - no inspection without a reason
 - provide authoritative, accessible advice
 - businesses not have to give unnecessary information
 - quickly identify businesses that persistently break regulations, face proportionate and meaningful sanctions
 - regulators accountable for their efficiency and effectiveness, remain independent in decisions taken

- For the more compliant companies - less frequent inspections and of less scope and depth ….

… and vice versa!
Risk-based inspection programme

- MHRA are developing systems for risk-based inspection planning, to meet the requirements of the Hampton report.
- **Blood Establishments**: Directive 2002/98/EC requires a site inspection at least every 2 years
 - Risk-based programme may vary the depth and scope of these visits.
 - Adverse risk indicators may also prompt ‘for cause’ inspections
- **Hospital Blood Banks**: Directive 2002/98/EC does not permit routine site inspections.
 - Risk-based programme identifies sites for inspection based upon non-compliance indicators, primarily annual compliance report and SABRE information.
 - Other intelligence sources may be used
haemovigilance Information

- SAE/SAR information provided to SABRE provides a key source of risk-indicating information.
 - Repeated SAEs at a site may indicate poor CAPA

- SABRE staff liaise regularly with the Inspectorate
 - Specific reports of concern
 - Monthly summary of issues which have been identified as potential inspection triggers
 - SAE reports useful to Inspectors in identifying areas of potential risk when conducting inspections
Haemovigilance Information

- Persistent non-reporters are beginning to attract attention.

- To date, no inspections have been triggered solely from SABRE reports

- SABRE information has been used to increase the risk rating of sites, subsequently triggering an inspection when assessed with other factors
Other Intelligence Sources

- In addition to primary information such as BCRs and SABRE, further investigation may be prompted by:
 - Complaint or Quality investigations at associated sites (either HBBs in the same group, or supplying BEs)
 - Inspection findings at other sites (e.g. design errors in LIMS systems)
 - Organisation information obtained via other areas of Inspectorate activity (e.g. organisation-wide financial or staffing problems)
 - Press reports
 - ‘Whistleblower’ reports
Use of Intelligence sources

- An individual intelligence report may not lead to a ‘for cause’ inspection
- Each is reviewed, and assessed on its own merits
- Action taken may include
 - Contacting sites who may be unaware of a weakness in their systems (e.g. LIMS software errors)
 - Telephone follow-up with a site to confirm incident details
 - Review of investigation reports and CAPA proposals
- Where an inspection is considered unnecessary, contact is maintained with the site until the issue is closed.
- Appropriate support may be offered
Inspection Outcomes
Inspection Outcomes

• Blood Establishments and Hospital Blood Banks have been inspected by MHRA since BSQR came into force in November 2005.
• Common areas of deficiency have remained essentially the same during the past 2.5 years.
 - Some of the underpinning principles of ‘Good Practice’ are still unfamiliar to the newly Regulated community
 - Many HBBs are receiving their first inspection under the risk-based programme, and the opportunity to share learning from other inspected sites has not been acted upon in many cases.
• Inspection deficiencies in this presentation focus on 2007-08 findings
Implementing systems based on Good Practice

• Inspections focus on compliance to Regulatory requirements (e.g. BSQR), and ‘Good Practice’

• The phrase ‘Good Practice’, or ‘GMP’ often has one or more of the following effects on personnel within the regulated Blood community:
 - Panic.
 - Dread.
 - Bewilderment.

• At it’s most basic level, Good Practice is largely common sense:
Good Practice

• Staff:
 - Does everyone know what to do? (training, assessment)
 - Is it clearly written down? (SOPs)

• Equipment:
 - What function(s) do you want the equipment to perform? (specs)
 - Does it achieve what you want? (validation)
 - How do you maintain it? (SOPs and records)
 - How would you know if it was not working properly? (controls, calib’n)

• Processes:
 - What do you want the process/test to achieve? (specs, aims)
 - Have you shown that it performs consistently? (validation)
 - What are the limitations which you need to control? (sample prep’n, reagent quality, SOPs)

• And finally……….. PROVE IT! (document everything)
Common inspection findings

The following common deficiencies, together with selected examples, will illustrate typical areas for improvement, and also highlight the simple steps which could have been taken to prevent the situation.
Common inspection findings (1)

- **Quality Systems**
 - Ineffective / missing reporting and investigative systems for incidents, deviations or complaints
 - CAPA poorly defined
 - Self inspection incomplete or missing
 - Disjointed procedures
 - Training
 - Inadequate resource to manage and operate the system
 - Non-compliance with established systems
 - ‘Panic fixes’
Quality System examples

- There are incomplete systems to record and investigate all relevant laboratory deviations, errors or unexpected events, particularly those which fall outside the scope of the Trust Incident System. Corrective and preventative actions arising from reported errors are not fully documented. There is no evidence of the periodic review of deviations and incidents.

- The self inspection system did not fully assess transfusion laboratory operations against the requirements of the Blood Safety and Quality Regulations, or Commission Directive 2005/62/EC.
Common inspection findings (2)

- **Deficiencies in haemovigilance reporting arrangements**
 - Late reporting
 - Evidence of not reporting SAEs and SARs
 - No linkage to key systems such as incident reporting and complaints.
Haemovigilance example

- An SAE/SAR may be notified to the laboratory >48hrs after the event due to delays inherent in the hospital incident reporting system, thus investigations and remedial actions, including the potential recall of other implicated components, can be significantly delayed.

- A ….. Incident report relating to transfusion reaction raised one year prior to the inspection had not been progressed or reported to SABRE.
Common inspection findings (3)

- **Validation and Change Control systems missing or incomplete**
- **Traceability**
 - Assumed transfusion
 - Missing records
 - Risk Assessment of known non-compliance
 - Insufficiently robust systems (resource or design)
 - Low traceability success rates
- **Documentation scope and control**
 - Missing SOPs
 - Uncontrolled / multi-versions
- **Temperature monitoring**
Validation example

- New …… blood analyser equipment had not been adequately validated to demonstrate that it was fit for purpose.
- Not all critical equipment functions had been validated.
 - Discrepancies were noted between results obtained from identical samples analysed using the previous analyser and the new analyser.
 - These discrepancies, although noted by site staff, had not been acted upon.
 - The analyser did not identify all known positive antibody samples.
 - There was a lack of documentation of investigations into the reasons for the apparent cross-contamination of rapid ABO / Rh grouping reagents, which lead to the incorrect blood groupings on …….. January 2007.
- When used as a diagnostic test to enable the electronic issue of blood in the presence of a negative antibody screen, the equipment did not ensure the suitability of blood components supplied.
Controlled storage equipment & Temperature Monitoring example

- Routine maintenance (e.g. cleaning & defrosting) was not performed on any controlled temperature storage facilities. Possible mould growth and heavy soiling were observed within the Stock refrigerator.

- Temperature charts were not reviewed by the laboratory. Evidence was observed where the Stock refrigerator (storage requirements 2°C to 6°C) had recorded a temperature of -5°C on the chart for 2 years without being addressed.

- During the inspection, the remote alarms linked to both the Ward and Main fridges were activated (tested). On neither occasion did the switchboard notify the transfusion laboratory of the alarm (contrary to the stated procedure).
Common inspection findings (4)

- **Laboratory practices**
 - Process controls and actions in the event of failure
 - Incomplete description of systems
 - Insufficient prevention of mix-up in records or samples
 - Lack of contemporaneous records
 - General condition or operation of the laboratory

- **Maintenance and Calibration**
 - Incomplete records
 - Lack of knowledge of maintenance requirements
 - Untraceable calibration
Laboratory practices examples

• A drawer in the laboratory contained multiple uncontrolled items many of which were totally unsuitable for an operational area. These included packs of jam, empty biscuit wrapper, sweets, salt and pepper sachets, an unclean coffee mug, a toy, centrifuge cleaning records from 2002, shaver handle, toothbrush, expired aqueous cream, old plasters and personal documents.

• The control of basic housekeeping duties within the laboratory was very poor with dust balls on top of the refrigerators, dirty floors, unclean equipment, and blood soiling in sinks.
Post-inspection commitments

A more recent emerging deficiency relates to a lack of compliance with improvement commitments made to MHRA, e.g.:

- A number of significant issues identified during the previous inspection had not been actioned in accordance with the previously submitted response to the MHRA inspection of August 2006. Some proposed corrective actions have been delayed by in excess of one year from anticipated completion date. The lack of robust and timely implementation of corrective actions have resulted in the presence of residual risk to the transfusion operation, which is considered to be unacceptable.
Comparison of inspection findings 06-07 vs 07-08

• 07-08 key areas of deficiency have remained essentially unchanged, and correlate well with 06-07 inspection findings
• Technical Agreement deficiencies appearing less frequently
• Becoming less frequent to find no systems to support key functions.
• Deficiencies are increasingly associated with ineffective systems, or non-compliance with procedure.
MHRA Experiences
MHRA Experiences

- Pragmatic approach taken by MHRA:
 - looking for the presence of key elements of QMS and Regulatory compliance in the first instance
 - focus on critical areas relating to quality and safety.
- Positive interaction with HBB and BE staff, and willingness to comply with BSQR
- Sites experience inadequate resource in some cases
- Lack of full awareness of regulatory and Good Practice requirements at inspected sites
- The number of common deficiencies identified indicates that laboratories are not taking full advantage of learning from the experience of other sites, and improving their systems accordingly.
Summary:

- The MHRA’s role in ensuring compliance with EU Blood Directives
- Risk-based inspection scheduling
 - The role of haemovigilance in this process
- Inspection outcomes
 - Common areas of deficiency
- MHRA inspection experiences
Discussions and Questions