5. Incorrect Blood Component Transfused

Definition

All reported episodes where a patient was transfused with a blood component or plasma product that did not meet the appropriate requirements or that was intended for another patient.

Four hundred and eighteen completed IBCT questionnaires were received. An additional case was transferred from the HTR section. Nineteen reports were withdrawn by the analysts, of which 13 did not meet the criteria for IBCT, and 6 were 'right blood to right patient' incidents, in which the patient received the intended component despite a serious breach of protocol. These are discussed separately at the end of this section. There were no reports of adverse events relating to autologous transfusion.

This section describes the findings from 400 analysed cases, a 17.5% decrease from 2005.

A striking feature this year is that for the first time there has been a reduction in the total number of reported cases of IBCT, even allowing for the decline in blood use over the past 4 years (see table 6). The reason for this reduction is not clear, and there are concerns that reporting may have been inhibited by early difficulties with the SABRE electronic reporting system, and by anxieties around the implementation of the Blood Safety and Quality Regulations.

It should be emphasised that the contents of SHOT questionnaires remain confidential to SHOT alone and also that adverse events in clinical areas not resulting in a reaction are not within the scope of the BSQR, and are therefore reportable only to SHOT.

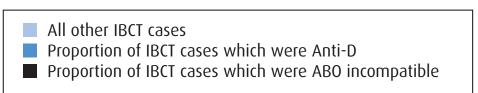
It is essential that all events continue to be reported to SHOT if a comprehensive and ongoing understanding of transfusion risks in the UK is to be maintained.

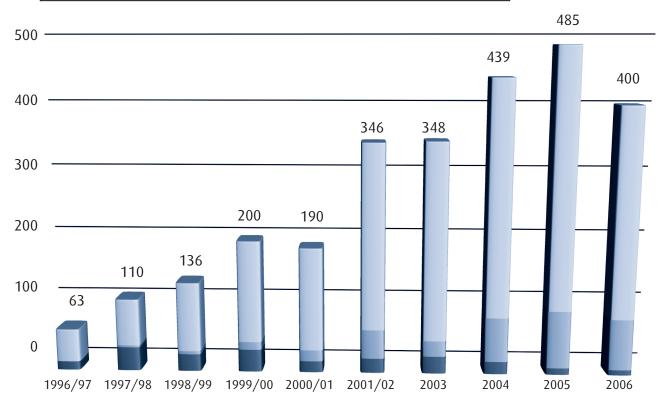
Table 6 Rate of reporting 2003–2006 (excluding 77 anti-D Ig) per 100,000 components issued

Year	Number of IBCT reports	Reports per 100,000 components
2003	324	9.5
2004	372	11.1
2005	398	12.8
2006	323	10.6

The ratio of ABO incompatible transfusions to total IBCTs is unchanged from last year. Nevertheless, the continued reduction in numbers of ABO incompatible red cell transfusions (figure 4) observed this year, together with the marked reduction in the highest risk errors, where a patient received a blood component intended for a different patient or of the incorrect group, is encouraging. Providing reporting is complete, this may provide evidence that practice is improving, particularly in clinical areas.

The work of transfusion practitioners in improving standards is acknowledged and must be supported in Trusts.


There is no cause for complacency, as 'wrong blood' events continue to occur where there has been failure to positively identify patients, either prior to blood sampling or prior to administration of blood. The practice of 'checking' blood away from the bedside, without a final patient identification check, often against a compatibility form, has not yet been eliminated. Implementation of the NPSA Safer Practice Notice 141 and NHS QIS Standards for Blood Transfusion7 should remove this source of error.


SPN 14 has 3 action points:

- implement an action plan for competency-based training and assessment for blood transfusion staff;
- eliminate the use of compatibility forms as part of the final bedside check;
- examine the feasibility of using bar codes or other electronic identification systems, photo identification and a labelling system to match samples and blood.

It is of note that the 2 fatal IBCT cases this year were not caused by errors in blood administration, but were due to incorrect prescribing, in both cases involving junior doctors. Case 1 highlights the importance of careful prescribing in paediatric transfusion, and case 2 emphasises the need to match abnormal laboratory results to careful assessment of the clinical picture. Both cases reinforce the recommendation that blood should only be prescribed by a doctor who has undergone training in blood transfusion and has been assessed as competent ^{8,9}.

Figure 4ABO incompatible red cell transfusions

Patients

253 Females 146 Males 1 Not stated

Ages ranged from <1day to 99 years

Forty-seven reports (12%) related to patients under 18 years of whom 31 (8% of total IBCT reports, or 66% of cases in patients under 18) were infants under 12 months.

Mortality and morbidity

There were no deaths related to ABO incompatible transfusion, but 2 patients suffered serious morbidity following ABO incompatible red cells (cases 3 and 9 below, both imputability 3).

An infant aged 12 months died after rapid transfusion of an excessively large volume of platelets (Case 1 imputability 2).

An 80-year-old female patient died of cardiac failure following an unnecessary transfusion based on an incorrect haemoglobin level (Case 2 imputability 1).

Case 1 – lack of care and accuracy in paediatric prescribing results in overtransfusion

A very sick preterm infant, aged 12 months, with multiple congenital abnormalities, had been in hospital since birth and was scheduled for elective surgery. The platelet count was 48x10°/L. The drug chart stated '1 pool of platelets' and did not specify the volume to be transfused. The nursing staff telephoned a junior doctor to request clarification of the platelet dose. The doctor stated that the verbal instruction was '15mL per kg'. The nurses misheard the prescription as '50mL per kg' and administered 300mL of platelets over 30 minutes. The infant suffered a cardio-respiratory arrest and was transferred to PICU where she died 2 days later.

Case 2 – faulty blood sampling technique and a wrong decision to transfuse

An 80-year-old female patient with a fractured neck of femur and expressive dysphasia from a previous stroke had a post-operative haemoglobin level reported as 3.9g/dL. The pre-operation Hb was 9.5g/dL and there had been little intra-operative blood loss. Eight hours following surgery the patient was noted to be restless, hypotensive and tachycardic. A junior doctor diagnosed hypovolaemia and prescribed 6 units red cells, all of which were administered over a 16 hour period. The post-transfusion Hb was 18.2g/dL, the patient subsequently died from cardiac failure. It was later realised that the blood sample with a Hb of 3.9g/dL was diluted by an iv infusion.

Learning points

- Prescriptions must be written by a doctor, and volume and rate of infusion must be clearly stated.
- Nursing staff must not accept verbal prescriptions or instructions, and should demand that prescribing protocols are followed.
- Medical and nursing staff should not work beyond their competence or expertise.
- All results, especially if highly abnormal, must be reviewed in the context of the patients recent history and current clinical condition.
- Large volumes of blood components must not be given without ongoing clinical and laboratory review.

Analysis of cases

IBCT case reports have again been analysed by category as follows:

Table 7

Type of event	Number (%)
'Wrong blood' events where a patient received a blood component intended for a different patient or of an incorrect group	54 (14%)
Other pre-transfusion testing errors (excluding erroneous Hb)	28 (7%)
Blood of the incorrect group given to recipients of ABO or D mismatched PBSC, bone marrow or solid organ transplant	8 (2%)
Transfusion of blood of inappropriate specification or that did not meet the patient's special requirements	108 (27%)
Inappropriate or unnecessary transfusions	51 (13%)
'Unsafe' transfusion where there were handling or storage errors	74 (19%)
Events relating to administration of anti-D immunoglobulin	77 (19%)
Total	400

In each subgroup, an attempt has been made to assess the contribution of errors in clinical areas and in laboratories.

1. 'Wrong blood' events (n=54)

These patients received a blood component intended for a different patient or of an incorrect group, and were put at risk of life-threatening haemolytic transfusion reactions.

- Eight patients received ABO incompatible red cell transfusions, 1 of whom was also D incompatible. Two suffered serious morbidity (both imputability 3) but survived.
- Three patients received ABO incompatible FFP (group O components given in error to patients of other groups). None suffered any adverse reaction, though 1 patient developed a positive DAT and agglutination on the blood film.
- Fifteen D negative patients inadvertently received D positive components (13 red cells, 2 platelets); 2 were female neonates, 1 a 4-year-old girl and 1 a 46-year-old female with a ruptured ectopic pregnancy. Eleven were males or elderly females. Three elderly females were subsequently found to have developed anti-D.
- The remaining 28 patients received components that were fortuitously compatible.

Causes of 'wrong blood' events

Table 8 shows the site of the primary error and also illustrates those cases where the primary error could have been detected at a later stage in the chain, but was not.

In 25/54 (46%) of cases the primary error was in the laboratory (c.f. 42.5% last year).

In 28/54 (52%) of cases the primary error was in a clinical area (c.f. 57.3% last year).

In 1/54 (1.9%) of cases the primary error was in the blood establishment (c.f. 0 last year).

Table 8 Site of the primary error that led to mis-transfusion

Site of Primary Error	No. of cases (%)
Sample from wrong patient	3 (6%)
Not detected by lab (previous group not noted)	1
Blood establishment	1 (2%)
Hospital laboratory failed to notice error	1
Not detected at bedside check	1
Laboratory error	25 (46%)
Not detected at bedside check	7
Wrong blood delivered to clinical area	15 (28%)
Not detected at bedside check	15
Blood administered to wrong patient	10 (19%)
Total cases	54
Total errors	79
Total errors in clinical areas	51 (65%)
Total hospital laboratory errors	27 (34%)
Total Blood Establishment errors	1 (1%)

Sample errors

Three cases were reported, 2/3 patients received ABO incompatible transfusions, of whom one suffered major morbidity.

Case 3 - Missed opportunities to avert a catastrophe

A 69-year-old female patient had a blood sample taken for a full blood count; the Hb was 8.9q/dL. As she was breathless a decision was made to transfuse her, and later the same day a 'doctors' assistant' was asked to take a further sample for repeat full blood count and a 2 unit crossmatch. The transfusion laboratory had no previous record of the patient. The Hb on this second sample was 9.9q/dL and the on-call BMS queried the need for transfusion, but was told that the patient was symptomatic and required the blood. The blood group of the sample was A D positive and 2 units were crossmatched and issued. Within 10 minutes of starting the first unit, the patient had a cardiac arrest. She was successfully resuscitated, the transfusion was halted and she was transferred to ITU. A further sample was sent to the laboratory for investigation of a possible transfusion reaction, but the on-call BMS was not alerted and did not carry out the investigation. The whole of the second unit was transfused in ITU early the following morning, surprisingly with no further apparent untoward effects. It appears that there was some discussion with the BMS prior to giving the second unit, but the possibility of an ABO incompatible transfusion was not considered.

Later that day the repeat sample was tested and grouped as O D positive. It was then realised that the sample taken by the 'doctors' assistant' for pre-transfusion testing was from another patient, who was not wearing a wristband and did not respond when asked to confirm her identity.

Learning points from this case

- Positive patient identification is an absolute prerequisite of blood sampling.
- Blood transfusion should only be undertaken at night if clinically essential.
- Unexpected discrepancies in laboratory results, such as occurred in this case, should be investigated and possible error considered.
- Clinical staff must be able to recognise a transfusion reaction and know how to proceed.
- A catastrophic transfusion reaction must be investigated urgently, with involvement of a consultant haematologist.
- The most senior doctor available should be involved in the decision to transfuse.

Laboratory errors

In 25 out of 54 (46%) 'wrong blood' reports the primary source of error was the laboratory. In another 2 cases previous mistakes, made in sampling and at the local blood establishment respectively, were not picked up by the laboratory when they should have been.

Fifteen of the errors occurred 'out of hours', 8 within normal working hours and 2 reports did not state the time of the error. Staff involved in the errors included 14 BMS staff who were transfusion specialists and 8 who did not work routinely in transfusion but were covering transfusion 'out of hours'. Two cases involved locum staff and in one report no information about the staff was given.

In 2 cases the wrong sample was selected for testing resulting in a wrong ABO group determination. Fortuitously neither error resulted in an ABO incompatible transfusion.

Case 4 – a basic error that might have been disastrous

When grouping the patient's sample, the duty BMS picked up the sample from another patient, consequently the group was incorrectly determined as A D neg instead of O D pos. Luckily, as the laboratory was short of A D neg red cells, O D neg was crossmatched and was compatible.

Eleven reports of grouping errors were received, 4 ABO and 7 D typing errors. 7 reports involved manual ABO/D techniques. In 6 of these cases the method used was the laboratory's manual, 'urgent' method and in one case the laboratory's manual, routine microplate method. In most cases the source of the error could not be clearly identified – reporters have queried either misreads or transcription errors. Only one report could prove a transcription error as the correct D type was written on a worksheet but then incorrectly entered onto the blood bank computer system.

In 3 cases automated systems were used for blood grouping but incorrect manual interventions resulted in the wrong D types being reported. In 2 of these cases false positive weak reactions were obtained with the anti-D reagent in use on the analyser and laboratory protocols to repeat the D type with a second anti-D were not followed. In a third case an incorrect blood group was manually entered into the blood bank computer following an edit of a weak reaction. All 3 patients produced anti-D. In the final case a group $A_{\text{weak}}B$ with anti-A1 was mistyped as a group B on an automated system. This was discovered some time later when a repeat sample came into the laboratory. The anti-A1 had disappeared, causing a grouping discrepancy between the forward and reverse group; a manual tube group was performed and a reaction with anti-A obtained.

Seven reports involved component selection errors. These were divided between those in which there did not appear to be any computer warnings that may have helped prevent the error and those in which computer warnings were overridden or not properly read. For example:

Case 5 – computer warning overridden

Two units of red cells were requested for a 79-year-old female patient on ITU. The patient's blood group was AB D neg but the BMS selected group A D pos blood and issued 2 units. The 2 units were transfused and the error was discovered when a sample taken for a group, and saved the following day grouped as A D neg. The laboratory system had flagged that the group was incorrect when the A pos blood was reserved but the BMS did not heed the warning. As the patient was AB D Neg the computer system flagged to say that blood of another ABO group was being issued. The BMS saw this warning but did not take into account the D group.

Labelling errors occurred in 5 cases. In 3 cases labels for 2 patients where blood components were being issued simultaneously, were transposed. In one case a unit of red cells that had not been crossmatched for that particular patient was labelled and in the final case, during an emergency situation, FFP left the laboratory without any labels attached to the packs. A report form with the numbers of the packs was issued.

Case 6 - failure to label correctly

The BMS crossmatching blood put a compatibility label on a unit of blood that was not matched for this patient (it was the same blood group) and issued the blood without completing the required checks. The ward staff then transfused this unit to the patient without completing the required checks.

In a number of the above cases it appears that basic, manual checks are being omitted or performed inaccurately, often during emergency situations.

This year has shown a reduction in the number of laboratory errors leading to 'wrong blood' events, although laboratory errors, as a percentage of errors made, has increased.

The following table shows the marked decrease in ABO typing errors this year:

Table 9

Year	Total No of Cases	Wrong Sample Tested	Interpretation /Transcription Errors	Other	ABO Incompatible Transfusions	Sequelae
2003	17	8	9		7	2 major morbidity
2004	18	5	12	1	6	1 death 1major morbidity
2005	22	9	12	1	9	1 AHTR
2006	6	2	3	1	0	No morbidity

Five of the 6 cases of ABO errors this year involved mistakes in manual testing, or mistakes in a manual step during automated testing, as did all the errors in D typing. In previous years the majority of ABO and D typing errors also occurred during manual testing.

The reduction in ABO typing errors seen this year is encouraging and there is some anecdotal evidence that laboratories have taken on board the messages of previous SHOT reports and have moved further away from manual testing. For example, automation is being used more often in emergency situations and greater numbers of out-of-hours staff have been trained in the use of available automation. However, there is also some concern that reporting may be incomplete as the decrease in errors has coincided with the commencement of MHRA inspections and, again anecdotally, there is a perception amongst reporters that an ABO typing error may initiate an MHRA inspection.

Learning points

Training and competency assessment in the laboratory must cover basic manual checking procedures to ensure
that these are second nature at a time when automation and computerisation will have lessened experience
and practice in these basic skills.

The following learning points from last year's report remain pertinent:

- Competency-based training for laboratory staff must include those working out of hours.
- A laboratory quality system, as required by the Blood Safety and Quality Regulations, must include internal incident reporting mechanisms and appropriate, documented, corrective actions.

Root cause analysis should be performed where there are adequate resources when a 'wrong blood' incident occurs, as these incidents potentially have the most serious outcomes. For example, in the 3 cases above, where a manual intervention was required on an automated system, questions must be asked about the reagents that gave the weak, false positive results as well as the process of manual intervention that failed.

Collection and administration errors

In 15 cases, the wrong blood was collected from the issue location and an inadequate pre-transfusion check failed to prevent its administration to the patient. Three resulted in ABO incompatible red cell transfusion.

In 7 of these cases, blood for a different patient was taken to the clinical area and in 6/7 cases was 'checked' against a compatibility form, with no final bedside identification check.

Five cases involved incorrect use of 'emergency O negative' blood.

In 3 cases, blood was delivered directly from a blood centre to a clinical area and transfused, bypassing the transfusion laboratory and in a further case highlighted earlier, unlabelled FFP was taken from the blood bank and transfused.

In a further 10 cases, the correct component was delivered to the clinical area but was given to the wrong patient.

In 7 of these cases the blood was checked away from the bedside against a compatibility form, and then taken to the wrong patient.

Of particular concern were 2 cases in which, when the error was discovered, the unit was taken down, the giving set changed and the remainder of the unit transfused to the intended patient. These cases, together with 2 reported in the 'unsafe' section in which the blood pack was accidentally punctured then resealed and the transfusion continued, illustrate a worrying lack of understanding of the potential risks of bacterial contamination of blood components.

In 1 case the wrong twin neonate was transfused. Two cases related to 2 patients in adjacent beds on a gastro-intestinal unit, both with obstructive jaundice and requiring invasive procedures, for whom FFP was prescribed. Eight units of FFP, 4 for each patient, were placed on a table between the 2 beds but were transposed. One patient received ABO incompatible FFP.

Case 7 - same name pitfall, colleagues trying to be helpful, and compatibility form used to check

A porter arrived in blood bank to collect 6 units of blood urgently required in ITU for a 76-year-old male patient, but did not take the required documentation with the patient details. He collected blood for another patient with the same surname.

The blood was received by the ITU Sister who informed the patient's named staff nurse that it had arrived, and placed it by the patient's bed, as the named staff nurse was occupied. Another nurse offered to put it up, and asked a student nurse to assist with the pre-transfusion check. Together they checked the unit of blood against the compatibility form and started the transfusion. The nurse then checked the ID number on the prescription sheet against the unit bag, realised it was the wrong blood and immediately stopped the transfusion. The blood was group A, the patient group 0.

Case 8 – failure of checking procedures in a night-time transfusion

An 84-year-old female patient (alias Ellen Johnson) was admitted to a medical ward for elective blood transfusion. As the ward was full, she was moved to a surgical ward, which received a total of 10 'boarding' patients that day. Another patient with a similar forename and surname (alias Ella Johnston), with crossmatched blood still assigned to her in the surgical satellite refrigerator, had been discharged from the surgical ward that morning.

Sometime between midnight and 0800 hours, the surgical ward nursing staff telephoned the porters to request collection of the blood for Ellen Johnson, but gave the forename and surname only. The porter went to the surgical satellite refrigerator, without taking the standard documentation for blood collection, and collected a unit of blood labelled for Ella Johnston. The blood for Ellen Johnson was in a different location, as it had been requested from the medical ward. The blood was 'checked' by 2 nurses against the patient's notes and wrist band, but the discrepancy was not noticed until the second incorrect unit was delivered to the ward by porter. Fortunately both patients were group O D negative, with no clinically significant alloantibodies.

Case 9 – multiple errors in an emergency transfusion

A 51-year-old male was admitted to A&E with a haemopneumothorax. A chest drain was inserted, the drainage was heavily bloodstained, and a venous sample was sent to the laboratory requesting 4 units of blood urgently. The patient's blood group was 0 D positive and 4 units of crossmatched blood were placed in the issue refrigerator, located in a small room off the main hospital corridor. The A&E department was notified that the blood was ready, and a porter was sent to collect it. There was a power cut in the hospital and the porter could not see to sign out the blood, so summoned a colleague to bring a torch. Using faint light, the 2 porters removed all 4 units of blood, but did not check the patient details against the issue sheet.

In the A&E department, 2 nurses 'checked' the patient details and component ID numbers against the compatibility form, but did not check the patient's wristband or ask him to identify himself. No observations were carried out during transfusion of the first unit of blood. When the second unit was commenced the patient complained of feeling unwell and was found to be hypotensive. At this point it was realised that the wrong blood had been collected and administered, and this group O patient had received 1.5 units of group B blood intended for another patient. The patient was admitted to ITU for management of an acute haemolytic reaction and made a complete recovery.

Other errors noted in the process were; that the blood was not prescribed until the first unit was in progress and the wrong surname was written on the transfusion chart. All 4 crossmatched units were removed from the blood bank and, even had the transfusion gone according to plan, 2 would have been out of temperature control.

Case 10 – night time transfusion, lack of wrist band, understaffing and lack of training made this a high-risk situation

Two elderly females were admitted to an orthopaedic ward at night, both with a fractured neck of femur. The ward was understaffed because of sickness and the nurses on duty had not recently received transfusion training. Patient A required transfusion, the urgency of which is not clear. Blood was crossmatched, issued and delivered to the ward, but was given to patient B, a 95-year-old female with dementia who was not wearing a wristband (the nursing staff were waiting until a printed ID band was sent to the ward from the central bed bureau and were unable to confirm her identity). The blood was compatible.

Learning points from these cases

- In all of these examples, staff were working under pressure and against difficulties, e.g. understaffing, power cut, excess workload, and were giving of their best efforts under adverse circumstances, but not realising that 'helping out' by doing someone else's job may increase risk.
- Staff should be educated to adhere to established safe procedures at all times, except in cases of extreme clinical urgency, which may justify the increased risk of deviation.
- High risk situations (such as simultaneous transfusion of patients in adjacent beds) should be recognised and, if unavoidable, special care taken with identification.
- Compatibility forms and patient notes MUST NOT be used as part of the final check at the patient's side¹.
- As recommended last year, blood administration outside of core hours should be avoided unless clinically essential.

2. Laboratory pre-transfusion testing errors (n=28)

Cases where antigen negative blood should have been selected for a patient with a previously known antibody but was not, are included in the 'Special requirements not met' section.

Of the 28 cases reported, 14 occurred 'out of hours', 13 in normal working hours and in 1 report the time was not stated. Twenty-one of the errors involved BMS staff who regularly work in transfusion and 7 involved BMS staff covering transfusion 'out of hours'.

The errors can be divided into testing/interpretation errors, i.e. where a test was not performed/interpreted correctly (6 errors) and procedural errors i.e. SOPs were not followed (22 errors). In one case two procedural errors occurred.

Testing errors included missing weak antibodies (4 cases). Three of these were antibody screens that gave negative results when performed manually but were then found weakly positive when repeated by automated methods. Two reporters cited extending automation to 'out of hours' as a corrective action that presented a training issue. Other problems occurred in antibody interpretation and phenotyping.

There were miscellaneous procedural errors. In 5 reports electronic issue had been used inappropriately when antibodies were present on the historic file or when an antibody identification was still outstanding. Other errors included using samples that were too old (7 cases), failing to consult maternal results when supplying blood to neonates and failing to link historic and current records, thus missing important antibody information.

In a number of cases robust lines of communication did not appear to be in place within the laboratory so that information available to one BMS was not picked up by the next BMS dealing with the case.

Case 11 – failure to check the age of sample

Two units of red cells were electronically issued on a specimen number that was over a-year-old. No formal compatibility testing was performed. The patient suffered a mild transfusion reaction (rise in temperature). A current sample was then located from the haematology laboratory and tested. The sample contained no atypical antibodies and the red cells were compatible retrospectively.

Case 12 - inappropriate use of electronic issue

Blood was accidentally issued electronically for a patient with a positive antibody screen. The error was detected the following morning during routine hours when the BMS on the antibody bench noticed that blood had already been issued on the sample that she was performing an antibody identification panel on. The antibody was identified as anti-E. By this time, the patient had been transfused 2 of 4 units, one of which was E positive. At the time the report was submitted to SHOT, the patient was being monitored by the consultant haematologist.

Case 13 – use of multiple patient identification numbers creates a hazard

A sample for group and save was entered into the computer with a Trust number. The BMS booking in the request failed to notice a previous record indicating the presence of anti-K. The antibody screen was negative. During the oncall period a crossmatch was added to the request and 6 units of blood were issued urgently, before the BMS on call realised that there was another record for the patient showing the anti-K. All 6 units were K negative. The two records were waiting to be merged.

Case 14 – failure to record an antibody specificity and use of a sample that was too old may have contributed to a death

Blood was originally transfused on the 9th and 10th of the month when the patient underwent CABG with subsequent complications. The patient had a known, single antibody at this stage (anti-Fy^a). A further blood sample was taken on the 13th and used to crossmatch blood for transfusion on the 16th. A new request for crossmatch was received on the 21^{st} as the patient was anaemic. This sample revealed a new antibody (anti-Jk^b) and it was shown that the patient was undergoing a delayed haemolytic transfusion reaction. On laboratory investigation into the case 2 errors were uncovered: the sample used for transfusion of blood on the 16th was too old; as the patient had been recently transfused the sample used should have been taken within 24 hours of the next transfusion. When the antibody identification panels from the 13th were checked it was found that an anti-Jkb had been detected but had not been entered onto the transfusion computer. The patient subsequently died as a result of the post-CABG complications, although the DHTR may possibly have been a contributory factor.

Learning points

- Laboratories must ensure that robust systems are in place for highlighting 'outstanding' work on a patient, for example patient records awaiting merging, incomplete antibody identification.
- Laboratories should follow the comprehensive quidance on the electronic selection and issue of units given in the BCSH quideline: 'The specification and use of IT systems in Blood Transfusion Practice'. Some pertinent points from this document are:
 - Robust procedures and strict adherence to protocols is essential to ensure safe working practices.
 - All electronic issue procedures should be controlled by computer algorithms to validate appropriateness of
 - For previously transfused patients, the timing of the sample must comply with BCSH quideline 'Compatibility Procedures in Blood Transfusion Laboratories' 10.
 - The patient's serum/plasma does not contain, and has not been known to contain, clinically significant red cell alloantibodies reactive at 37°C.

3. Blood of wrong group given to recipients of ABO or D mismatched haemopoetic stem cell and solid organ transplants (n=8)

- 5 ABO mismatched haemopoetic stem cell transplants
- 2 D mismatched haemopoetic stem cell transplants
- 1 ABO mismatched liver transplant

The liver transplant patient suffered severe haemolysis resulting in acute renal failure, but this was not considered to be caused by the transfusion (imputability 0). The remaining 7 patients had no adverse reactions to transfusion.

In 5 of these cases the requestor did not inform the laboratory that the patient had received a mismatched transplant. One of these should have been detected by the laboratory finding a discrepant reverse group.

In 3 cases the primary error was in the laboratory, including 2 where the BMS failed to take note of a computer 'flag'.

Three of the 4 cases in which there was a laboratory error were tested outside normal working hours by a BMS who did not normally work in transfusion. The degree of urgency is not clear.

Learning points

- Clinical staff must ensure that the transfusion laboratory is fully aware of these complex cases, and unless there is extreme urgency, pre-transfusion testing should be done by experienced staff during normal working hours.
- A mechanism for communication of transplant details between clinicians and laboratories must be in place.

4. Transfusion of components of inappropriate specification or that did not meet special requirements (n=108)

The number of these cases is reduced from last year, particularly those requiring irradiated or antigen negative blood. Irradiation is now carried out exclusively by Blood Establishments but it is unclear what effect this might have on adverse event reporting rates. Nevertheless, 82 patients were placed at risk of TA-GvHD. There were no adverse outcomes in this category.

Table 10 Special requirements not met

Special requirement	No. of cases
Irradiated components	77
CMV negative components	9
Irradiated and CMV negative	5
Antigen negative red cells for patient with known antibody	7
Phenotyped or K-neg red cells	2
Neonatal/paediatric red cell transfusion,	4
Viral inactivated single donor non-UK FFP for children <16	4
Total	108

Table 11 Sites of the errors that led to failure to provide special requirements

Site of Primary Error	No. of cases (%)
Request errors	79 (73%)
Also laboratory error	18
Also bedside error	24
Blood establishment errors	4 (4%)
Also hospital laboratory error	1
Hospital laboratory errors	23 (21%)
Also bedside error	10
Unsuitable component collected	2 (2%)
Also bedside error	2
Total cases	108
Total errors	163

In 38 cases there was failure to request special requirements and no means of detecting these requirements at a later stage (in the laboratory or at the bedside). In 19 of these cases patient care was shared between 2 healthcare organisations and the need for the special requirement was not communicated to the organisation where the patient was being transfused.

Learning point

A formal mechanism needs to be introduced for informing other hospitals of patients' special requirements.

Table 12 Indications for irradiated products (n=82)

Indication for irradiated components	No. of cases
Purine analogue therapy	29
Stem cell transplantation	8
Hodgkin's Disease	19
Di George syndrome (confirmed or suspected)	5
SCID	2
Severe aplastic anaemia/ALG	1
Neonate, previous in utero transfusion	2
Miscellaneous *	16
Total cases	82

^{*} Includes cases in which the indication for irradiation is unclear, or appears to be in excess of current BCSH guidelines

Case 15 – use of multiple patient identification numbers creates a hazard (again)

A 34-year-old female patient with Hodgkin's Disease was admitted to the local hospice for top-up transfusion. The request was made using a hospice admission number, not the Hospital number, and the previous transfusion laboratory history was therefore not found. The request form stated 'Hodgkin's Lymphoma' but the box requesting irradiated components had not been ticked. The BMS 1 doing the crossmatch did not recognise the need for irradiated blood.

Cases 16, 17, 18, 19, 20

These 5 infants aged between 10 days and 4 months and with a confirmed or suspected diagnosis of Di George Syndrome, received non-irradiated blood components during cardiac surgery. In 4 cases, the blood request did not specify irradiated components, though the diagnosis was written on the request form. In the fifth, the diagnosis was made during the operation and irradiated components were requested, but the previously ordered, non-irradiated blood was used.

CMV negative components (n=14)

The balance of evidence from clinical studies suggests that acceptable CMV safety can be achieved by pre-storage leucodepletion¹¹, however CMV seronegative cellular components continue to be requested and provided for CMV antibody-negative pregnant women, CMV antibody-negative recipients of allogeneic stem cell transplants, intrauterine and exchange transfusions and patients with HIV disease¹². No case of transfusion-transmitted CMV has been reported to SHOT.

Antigen negative red cells for patient with known antibody (n=7)

All but 1 of these cases were laboratory errors, including 1 error by a reference laboratory

One case was reported where the patient was known to have anti-e, but emergency group O D negative blood was taken from a satellite refrigerator in an emergency. Anti-e had been found on the pre-op sample & reported. The patient was taken to theatre without checking the blood group and antibody results, thus not requesting appropriate blood in advance. When uncontrolled bleeding occurred emergency O negative (rr and thus e positive) was used without contacting and consulting with the laboratory. The laboratory did have type-specific blood available in stock that could have been issued as type specific immediately had they been asked to do so.

Phenotyped or K-neg (n=2)

One was a patient with sickle cell disease, and one a young female, where hospital policy was to provide K negative blood.

Neonatal transfusions (excluding irradiation) (n=4)

In 2 cases 'adult' group 0 D neg blood was taken from a satellite refrigerator for a neonate in extremis.

One case was of red cells in SAG-M provided for a neonatal exchange transfusion because the reason for transfusion was not stated in the verbal request.

One case was of 'adult' red cells provided by blood bank staff for a 9-month-old infant because the volume requested was greater than 1 paedipack.

Failure to issue viral-inactivated non-UK FFP for a child less than 16 years (n=4)

Four cases were reported. In two the FFP was required urgently and MB was not readily available.

In a further two cases a computer flag might have ensured selection of correct component.

Learning points

There are opportunities throughout the transfusion chain where special requirements can and should be documented and communicated. There should be formally established communication channels, supported as far as possible by information technology.

- Bone marrow transplant units must have a robust mechanism in place for communication of special transfusion requirements, and responsibilities must be clearly defined.
- Arrangements for shared care must specifically include communication of special transfusion requirements.
- Identifying the need for special transfusion requirements is ultimately a clinical responsibility and the requirement must be clearly indicated on the request form and the blood prescription. The design of such documents should facilitate this and prescriber education is required. The use of an e-form may improve accuracy and facilitate the process.
- There should be local protocols empowering blood transfusion laboratory staff to ensure that appropriate clinical information is provided with requests for blood transfusion. It is not the responsibility of the laboratory staff to recognise clinical conditions indicating special requirements, but they can provide an additional safeguard and should check the clinical and demographic details on the request form.
- IT 'flags' should be used wherever possible, e.g. date of birth warnings, transplant patient.
- The pre-transfusion check at the bedside must include checking of special requirements against the prescription.
- When purine analogues are prescribed for a patient this should be immediately communicated to the transfusion laboratory so that the patient record can be appropriately 'flagged'. This can be effectively achieved by automatic download from the pharmacy to the laboratory computer.
- A histological diagnosis of Hodgkin's Disease should trigger a communication to the transfusion laboratory. Again, this can be supported by a link between the histopathology and the transfusion laboratory computer systems.
- Cardiac surgical units undertaking correction of congenital heart defects must be aware of the requirements for irradiated blood for patients with confirmed or suspected Di George Syndrome.
- The need for irradiated components must be clearly indicated in the patient's case notes and on blood component prescription chart.
- The patient must be educated regarding the requirement for irradiated components and provided with written information and a card.